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The need for multiple Grobner bases

What are some monomial orders we might use?

@ Homogenizing an ideal: graded orders.
o Eliminating variables: lexicographic orders.

@ Tensor products of polynomial rings: product orders.

We wish to explore the possibility of using a Grobner basis that
works regardless of the monomial order. This is a universal Grobner
basis [Weipsfenning, 1987]. More generally we will be interested in
how a Grobner basis changes as we vary the monomial order.
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Existence of universal Grobner bases

Let K be a field. Any ideal | C S := K][x, ..., xa] has finitely many
initial ideals LT (1).

Assume X, the set of initial ideals of / is infinite. By the
properties of leading terms, a descending chain can be constructed,

30D X1 DXy D ... Corresponding to this is an ascending chain
of monomial ideals, (m1) C (m1, mp) C (m1, mo, m3) C ....

If / is and ideal in S, we say two monomial orders <, and <, are
equivalent if LT (/) = LT.,(/). There are finitely many
equivalence classes.
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Existence of universal Grobner bases

Every ideal | C S posesses a finite, universal Grobner basis.

For the monomial orders on /, choose one element from each
equivalence class. For each representative order, find the Grobner
basis. By construction this is a Grobner basis for any equivalent
order. Take the union of all such Grobner bases. O

How may one find an ideal’s universal Grobner basis in practice?
At each stage of Buchberger’s algorithm, consider every way that a
monomial order could possibly distinguish between your
monomials. Run Buchberger’s algorithm that many times.
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An Example

Consider the ideal defining the affine twisted cubic:
I =(y—x%z-x% CQ[x,y,z]. Running the algorithm, we can
make the following chart:

Initial Ideal Grobner Basis

<y3,XZ,Xy,X2> {y3—22aXZ_y2,Xy—Z>X2—y}
<Z27XZ7X)/7X2> {y3—z2,xz—y2,xy—z7x2—y}

<y2,xy,X2> {yz—XZ,Xy—Z,Xz—y}
(y:x%) (x> —y,x* -z}
<y,Z> {X2_y’x3_z}
<z,x2> {z—xy,x> -y}
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An Example

Consider the ideal definin

g the affine twisted cubic:

I =(y—x%z-x% CQ[x,y,z]. Running the algorithm, we can

make the following chart:

Initial ldeal

Grobner Basis
2

<y3,xz,xy,x2>
<22, XZ, XY, x2>
(V2 xy, x%)
(v, x%)
(v,2)

(2.%%)

(Y’ -2, xz—y*xy—z,x>—y}
{* -2, xz—y* xy —z,x2 — y}
{ﬁ_xz,ﬂ—z,ﬁ—Y}
(x> =y, x> -z}
{x>—y,x* -z}
{z—xy,x* =y}
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Varrying term orders

For a non-negative integer matrix,

w1

Wn

let x® >y xP if a-wy > B-wyorifa-w; =0 w; and
a-wWp > 0 -wp and so on.

A relation on S := K[x, ..., xs] is @ monomial order if and only if it
is >y for some matrix M [Robbiano, 1985].
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Varrying term orders

Suppose G = {g1, ..., &t} generates an ideal whose initial ideal is
(x> .., x*()) We want this to be equal to

(LT(g1), -, LT (g¢)). This will be true with respect to a monomial
order whose first weight vector is in:

Cg = {w € Ry : (a(i) — B) - w > 0 whenever x? appears in g;}

These are open cones in the positive orthant of R”.
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Varrying term orders

Let | C S be an ideal. If G1 and G are diﬂfinct marked Grobner
bases of I, Cg, N Cg, = 0. The union of Cg over all marked
Grobner bases G is the entire positive orthant without the origin.

If w belongs to the intersection then G; and G, are Grobner bases
for I with respect to some monomial order that has w as its first
weight. [ has only one initial ideal for this fixed order but G; and
Go were chosen to give it different initial ideals. To prove that the
union of the closures is RZ,\{0}, note that every such vector is
the first weight vector of some monomial order. Ol
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The Grobner Fan

The collection of these cones is the Grobner fan of an ideal [Mora
& Robbiano, 1988]. It divides the positive orthant into chambers.

Example

Recall that one of the marked Grobner bases for the twisted cubic
was G3 = {ﬁ— XZ, Xy — z,x2 —y}. wisin Cg, if and only if, it
corresponds to an order that causes the leading terms of G3 to be
the ones underlined. The conditions are:

e (0,2,0)-(a,b,c) > (1,0,1)-(a,b,c)

e (1,1,0)-(a,b,c) > (0,0,1) - (a, b, ¢)

e (2,0,0)-(a,b,c) > (0,1,0) - (a,b,c)
These define the cone:

Cg, ={(a,b,c) Ry :2b>a+c,a+b>c,2a> b}
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The Grobner Fan

Connor Behan Universal Grobner Bases



The Grobner Fan
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The Grobner Walk

Consider fi, ..., fn € K[t1, ..., tm]. If

J=(x1—f(t1, ., tm), oy Xn — Fa(t1, -, tm)), polynomial
implicitization tells us to compute / := JNK[xq, ..., xp]. We do not
need to solve for a Grobner basis for the t elimination order. We

already have a Grobner basis for the x elimination order.

Algorithm

Given a Grobner basis for a starting order, the Grobner walk can
convert it to the Grobner basis for a target order quickly by
following a path from cone to cone and performing a computation
at each boundary [Collart, Kalkbrener & Mall, 1997].
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